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Abstract.The three-dimensional (3D) point spread function (PSF) of multilayered flat lenses
was proposed in order to characterize the diffractive behavior of these subwavelength image
formers. We computed the polarization-dependent scalar 3D PSF for a wide range of slab
widths and for different dissipative metamaterials. In terms similar to the Rayleigh criterion we
determined unambiguously the limit of resolution featuring this type of image-forming device.
We investigated the significant reduction of the limit of resolution by increasing the number
of layers, which may drop nearly 1 order of magnitude. However, this super-resolving effect is
obtained in detriment of reducing the depth of field. Limitations exist on the formation of 3D
images. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3590244]
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1 Introduction

The Cartesian ovoid of revolution is recognized to produce perfect imaging for a given conjugate
pair of points by refraction.1 In reflection, such surfaces are the conic sections. The case of the
plane mirror has been unique until recently because no matter where the object lies, or whether
it is “real” or “virtual,” its image in a plane mirror is completely free from monochromatic
aberrations. Therefore a metal-coated flat surface generates virtual stigmatic images from three-
dimensional (3D) objects. With the advent of negative-refraction-index (NRI) metamaterials
now we may generate a real 3D perfect replica back in refraction. In this sense Vesselago
showed for the first time that a NRI plane-parallel plate will focus radiation from a point
source.2 Only recently it was demonstrated this unique feature of imaging by a flat lens using
the phenomenon of negative refraction in a photonic crystalline material.3 Importantly, Pendry
pointed out that evanescent waves also contribute to the focal volume leading to the concept of
flat superlenses which demonstrate subwavelength resolution.4

In principle, stigmatic imaging might be repeated sequentially in multilayered NRI slabs.5

This type of flat devices still conserve the properties of linearity and 3D shift invariance. On
the basis of these two properties we formulated the image formation of thick objects by means
of a convolution involving the 3D point spread function (PSF) of a single-layer superlens.6 It
is obvious that the use of the scalar 3D PSF, which is evaluated for p- and s-polarized waves
independently, may be extended to any stratified medium. This might be of convenience since
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the 3D PSF demonstrates high suitability for evaluating the limit of resolution by using the
Rayleigh criterion or some others alike.

In this paper we introduce the 3D PSF as a useful tool for the characterization of the limit
of resolution, not only in the image plane but also in out-of-focus planes. We are especially
interested in determining the limit of resolution of flat NRI multilayered superlenses in terms
of the number of films and its geometrical distribution. Dissipation effects are also discussed.
Another aspect to be considered on the formation of real images from extended objects is that the
latter should be practically flat although it may contain volume details such as small grooves and
surface defects. Moreover, when dealing with multiple localized emitters, they are not found
necessarily in the same transverse plane though they should be placed in planes very close
among themselves. With regard to this matter we discuss the limitations on the depth of field of
stratiform image formers.

2 PSF of a Flat Superlens

In order to estimate the limit of resolution of a flat superlens it is possible to use the field
distribution generated by a point object. Hakkarainen et al. calculated the PSF of the imaging
system by investigating near-field imaging of a point dipole by a lossy, nanoscale metamaterial
slab.7 Here we employ an alternative method in order to determine the impulse response. This
approach consists of evaluating the PSF produced by a point source which is characterized by
a delta function in the object plane. This is thoroughly discussed in Ref. 6 and we only give a
brief summary.

Let us start by considering a NRI medium of width d, relative permittivity and relative per-
meability ε2 = μ2 = −1 + iδ for simplicity, where δ > 0 stands for the absorption coefficient.
In the numerical computations we preferably used δ = 0.1 to obtain a qualitative assessment of
our approach. In the surrounding medium ε1 = μ1 = 1. Now it is convenient to treat individu-
ally p-polarized waves and s-polarized waves. Based on the angular spectrum representation of
the scattered field, for s-polarized waves, the field in the image space may be expressed as a 3D
convolution in the form of

�E( �R, z) = �Esc( �R, z − 2d) ∗ h( �R, z), (1)

where �Esc is the electric field excited by the source, and �R ⊥ ẑ. The scalar 3D PSF

h( �R, z) = 1

(2π )2

∫ ∫
T (�k⊥) exp(i�k⊥ �R) exp(iβ1z)d�k⊥, (2)

is derived by means of the transmission coefficient between the object plane and the conjugate
image plane placed at a distance 2d,

T = t1,2t2,1e
i(β1+β2)d

1 − (r2,1)2e2iβ2d
. (3)

Airy’s formula given above depends on the reflection coefficient at a single interface, which
yields

rp,q = μqβp − μpβq

μqβp + μpβq

(4)

for TE waves, and the transmission coefficient tp,q = 1 + rp,q . Finally the propagation constant

βq = σq

√
εqμqk

2
0 − �k2

⊥, (5)
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Fig. 1 Modulus of the PSF |h| within z ≥ −d at λ0 = 600 nm for an absorbing slab with δ = 0.1
and different widths: (a) d = 1.8 μm, (b) d = 600 nm, (c) d = 400 nm, and (d) d = 60 nm.
The density plots are normalized to unity at the geometrical focus (x, z) = (0, 0). The solid line
indicates points where the amplitude fall-off reaches a value 1/2. The dashed vertical line marks
the focal plane.

where σq = 1 for dielectrics and σq = −1 for NRI media, k0 is the wavenumber in vacuum and
�k⊥ is the projection of the wave vector over each flat-lens interface.

Note that h( �R, z > 0) for T = 1, that is for δ = 0, represents the propagator of the first
Rayleigh–Sommerfeld integral and it is related with a divergent wave which focus is found in
the image plane z = 0.8

Formally we may establish a scalar PSF for TM waves by substituting �E → �H and μq ↔ εq

concerning the electromagnetic fields and the constitutive parameters of the media. In general
the PSFs for s- and p-polarization are different. Let us remind that εq = μq is assumed not
only in the surrounding medium but also in the metamaterial having negative permittivity and
negative permeability. As a consequence, the transmission coefficient (3) for both polarizations
are alike and therefore their corresponding PSFs are also identical. We point out that such an
optimal condition might be uncommon in practice, especially concerning the term δ which
represents material losses. In fact, ε2 �= μ2 would lead to image aberrations which deserve a
detailed study and therefore are not considered in this paper.

The integrand in Eq. (2) is radially symmetric so that the evaluation of the 3D PSF is
simplified as

h (R, z) = 1

2π

∫ ∞

0
T (k⊥) J0 (k⊥R) exp(iβ1z) k⊥dk⊥, (6)

where the radial coordinate R = | �R|, and J0 is the Bessel function of the first kind and of order 0.
In Fig. 1 we represent the PSF for a moderate absorption coefficient δ = 0.1 and different widths
out of the interval z ≤ −d constituting the virtual image space. The amplitude distribution of
the PSF for a slab width d below the wavelength shows a behavior different than the impulse
response for d � λ0. For instance, if d = 60 nm, the full width at half maximum (FWHM) of the
PSF in the geometrical image plane yields 	⊥ = 73.5 nm, which is well below the wavelength.
Moreover, the amplitude reaches a maximum value in the central point R = 0 over the output
surface of the lens. Note that in the imaging process, the record of the subwavelength details
are associated with spatial frequencies higher than k0 which fall off fast in the transit from the
output plane of the lens toward the image plane, thus frustrating a 3D focusing.9 On the contrary,
when d = 1.8 μm then 	⊥ = 552 nm, which is a value close to λ0. In this case, the amplitude
maximum is found far from the output interface quite close to the image plane. Nevertheless a
small axial shift of 104 nm is encountered in the direction of the lens. Finally, the FWHM along
the z-axis may be evaluated in this case giving 	z = 1.70 μm.
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Fig. 2 Intensity in the real image space of the field excited by two incoherent point sources
after passing through a superlens of d = 60 nm and δ = 0.001. In (a) the point object O1 is
40 nm nearer the lens than O2. In (b) the two sources are placed in the same transverse plane.
(c) Contour of intensity 1/2 for the 3D PSF corresponding to a point image generated by flat
superlenses of different δ and placed in the xz-plane.

3 Limit of Resolution

In order to determine the limit of resolution making use of the PSF we may find diverse criteria.
Perhaps the most known criterion was introduced by Lord Rayleigh,10 which establishes that
two point objects are resolved if the maximum in the diffraction pattern excited by one source
lies at least on the first dark ring of the diffraction pattern generated by the second source.
Note that for a diffraction pattern in the form of an Airy disk, the limit of resolution coincides
with 1.18 times the FWHM of the central peak in intensity. In this paper we consider a similar
criterion. Specifically we simply consider the FWHM of the PSF as the limit of resolution of
the image-forming system.

Figure 2 illustrates our criterion by showing the field intensity produced by two equienergetic
point sources in the image space of the flat superlens analyzed in Fig. 1(d). In particular,
one of the point objects O1 is located at R′

1 = (60 nm)x̂ and the second point object O2

is displaced to R′
2 = (−60 nm)x̂. For the evaluation of the intensity distribution we assume

that the electromagnetic field is formed by the incoherent superposition of the waves emitted
by both sources, putting a stop to spurious interference effects. This is fully consistent with
approximations commonly employed in fluorescence microscopy.11 In this case, the distribution
of intensity is proportional to

∑
j=1,2

∣∣h(R − R′
j , z − z′

j )
∣∣2

, (7)

where z′
j denotes the location of the two geometrical image planes. Every graphical representa-

tion in Fig. 2 is normalized to unity at the image point O ′
1. Additionally, the contour line denotes

an intensity that has fallen down to a value 1/2.
Figure 2(a) shows that if the point object O1 remains 40 nm nearer the superlens than O2,

its geometrical image O ′
1 is located in a plane (z′

1 = 0) further from the output plane of the
lens. The presence of the secondary image O ′

2 is practically unperceivable in this transverse
plane because of the evanescent nature of the image field generated at z′

2 = −40 nm. Shifting
to the plane of the geometrical image O ′

2, it can be caught. However the intensity distribution
is superimposed with an intense back tail of the PSF produced by O ′

1. Moreover, the contour
of intensity 1/2 wrapping around the image point O ′

2 in the image plane z′
2 also envelopes the

diffraction pattern of O ′
1. Consequently both images are not perfectly resolved. However in

Fig. 2(b) we observe that when both sources are co-planar then both images may be resolved.
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Fig. 3 Evanescent wave field with transverse spatial frequency k⊥ = 2k0 traveling from the object
plane to the image plane of a flat monolayer and a trilayer superlens. In all cases λ0 = 600 nm,
δ = 0.1, and d = 60 nm. Thick dashed lines indicate the position of the object plane and the final
image plane. Thin dashed lines denotes intermediate image planes.

In Fig. 2(c) we represent the contour of intensity 1/2 corresponding to the normalized 3D PSF
for different NRI flat lenses of width d = 60 nm. In the numerical simulations, the wavelength
λ0 = 633 nm remains the same. In the geometrical image plane, the film of δ = 0.001 shows
a PSF in irradiance with a radius 12.5 nm, significantly lower than 27.3 nm attributed to a
NRI superlens of δ = 0.1. Such a super-resolving behavior is kept in neighbouring transverse
planes. However, the contribution of the intense sidelobes leads to an increment of the limit of
resolution for δ = 0.001. In this particular case we observe that the first lateral peak determines
the limit of resolution within the interval −21.6 nm < z < −13.6 nm, and the second sidelobe
is determinant in planes at −27.8 nm < z < −21.6 nm, up to 8 sidelobes influencing the limit
of resolution in the real image space. In the case δ = 0.1, however, only the first sidelobe may
contribute effectively.

4 Extreme Super-resolution in Multilayered Structures

Originally the flat superlens was conceived as an image-forming system composed of a single
NRI slab.2 Also a silver nanolayer demonstrates the ability of generating an image with sub-
wavelength features.4 Soon it was shown that the limit of resolution of a metallic superlens
might be reduced substantially if it is substituted by a set of layers with free-space in between.12

This improvement is based on the lesser amplification of evanescent waves, so that dissipative
effects also diminish. In Fig. 3 we compute the electric field of an evanescent wave field with
transverse spatial frequency k⊥ = 2k0 propagating from the object plane toward the image plane
for two different superlenses: a one lens is composed of a single layer of width d and b the
second lens is composed of three equidistant films of width (and separation) d/3. In all cases λ0

= 600 nm, δ = 0.1, and d = 60 nm. The amplification of the evanescent wave in the multi-
layered superlens is significantly lower. The existence of secondary images in the intermediate
spaces allows that new evanescent waves with higher spatial frequency contributes effectively
in the formation of the final image, thus improving the resolution power.5 This idea is being
upgraded in recent years.13–16

A general NRI multilayer flat lens is sketched in Fig. 4. Inside the lensing arrangement N

NRI layers are distributed uniformly. Every thin film has a width d/N . Therefore d denotes
the resultant length after summing up the widths of all the layers, leading to a distance 2d

between the plane of the object and the final geometrical image plane. Note that every interface
dielectric-NRI generates a stigmatic image that acts as an object for the next interface, giving
2N − 1 secondary images. The distance between two adjacent layers is f d/N , where f is
a non-dimensional coefficient of proportionality. The width of the multilayer arrangement e

results by summing up N NRI films and N − 1 interspaces,

e = d

(
1 + f

N − 1

N

)
. (8)
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Fig. 4 (a) Scheme of a multilayered superlens containing N uniformly-distributed films. We
indicate the zones where we may encounter real conjugated pairs simultaneously. The parameter
� denotes the width of these two zones. On the right we represent different trilayer superlenses.
From (b) to (d), the distance between NRI films increases gradually. Object and final image planes
are represented by thick dashed lines, and secondary images are denoted by thin dashed lines.

In order to generate a real image, the superlens width e should be lower or at least the same as
the distance between the object plane and the image plane, e ≤ 2d. In this case f ranges within
the interval

0 ≤ f ≤ N

N − 1
≤ 2 , (9)

and the natural number N ≥ 2.
Let us point out three cases of special interest. First, if f = 0 the set of N films are stacked

so that the optical system behaves like a monolayer superlens of width d as shown in Fig. 4(b).
When f = 1 the NRI films and the free space in between coincide in breadth, as illustrated in
Fig. 4(c). Finally in the limit f = N/(N − 1), the input and output faces of the arrangement are
in contact with the object and image planes, respectively. This is depicted in Fig. 4(d).

In order to evaluate the limit of resolution corresponding to multilayer superlenses we
estimate the FWHM of the 3D PSF once again. In this case the transmission coefficient T used
in Eq. (2) is computed by using the characteristic matrix formulation for isotropic stratified
media.17 In the numerical simulations we use a NRI material of total width d = 60 nm and with
an absorption coefficient δ = 0.1; also the radiation wavelength is λ0 = 632.8 nm. The results
are shown in Fig. 5(a). Within the interval 0 ≤ f ≤ 1 the FWHM exhibits a linear decreasing
behavior. However its value is maintained constant for f > 1. On the other hand, the FWHM
decreases if the number N of layers increases up to a saturation limit. In practical terms we may
consider that 128 layers represents this limiting case, for which the FWHM is only 8.82 nm.

The multilayer superlens turns up as an alternative of special interest in comparison with
the monolayer case since the former reduces the limit of resolution significantly. However this
sort of device withstands a major difficulty in order to generate real images. In the first place,
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Fig. 5 (a) Limit of resolution for flat superlenses of different number N of layers and separation
f, keeping d = 60 nm fixed. (b) Depth of field normalized to d as a function of f.
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Fig. 6 Intensity of the PSF in the plane xz of the image volume for a superlens of N = 4 layers
and: (a) f = 0, (b) f = 1/2, and (c) f = 1. The dashed line represents the boundary of the real
image space.

the scattering objects should be located closer to the entrance face of the superlens, and as a
consequence the conjugate images are also found nearer the output interface. For convenience
we introduce the definition of the depth of field 	 as the width of the two zones where we may
encounter real conjugate pairs of objects and images, simultaneously. Such a width is obtained
by considering the distance object-image and subtracting the superlens width, 	 = 2d − e. By
utilizing (8), we finally obtain

	 = d

(
1 − f

N − 1

N

)
. (10)

Equation (10) provides a linear relationship between the depth of field and the distance from
adjacent layers. Note that 	 is reduced if the interspace width increases.

The depth of field (10) as a function of f is depicted in Fig. 5(b) for different number N

of layers. It is shown that increasing the interspace between layers reduces the depth of field
linearly. The slope of these straight lines, (1 − N )/N , quickly drops when the number N of
layers increases, reaching the limiting value −1.

By comparing Figs. 5(a) and 5(b) we conclude that an increase in the number N of layers
leads to a reduction of the limit of resolution. This effect is achieved in detriment of reducing
the depth of field, which results highly harmful in the formation of 3D images. This tendency is
repeated if the interspace between layers increases. Optimization of the geometrical coefficient
f might consist of reaching a trade-off between the limit of resolution and the depth of field
necessary for a specific application.

We have computed the 3D PSF for N = 4 nanolayers and different values of f , which
are depicted in Fig. 6. In the numerical simulation, the wavelength is set λ0 = 632.8 nm,
and the parameters characterizing the NRI medium are d = 60 nm and δ = 0.1. In Fig. 6 we
observe that a higher f goes with a narrower central peak of the 3D PSF, involving a resolution
improvement in transverse planes close to focus, z = 0, where sidelobes may be neglected.
However evanescent tails grow up with f , which are plainly seen in planes near the focal
plane. These sidelong peaks lead to discontinuities in the limit of resolution, which are derived
from our criterion of resolution, likewise the case N = 1 previously analyzed. In particular, the
first discontinuity is found at z = −37.7 nm in Fig. 6(a) and it is shifted to z = −14.5 nm in
Fig. 6(c). We remind that a higher interspace between layers, that is an increment of f , forces a
deterioration of the depth of field. In this sense we have included a dashed line in each subfigure
to mark the boundary z = −	 delimiting the real image space and the virtual image space. It is
confirmed that an increase of f leads to a depth-of-field falloff.

5 Conclusions

Finally we conclude that layered metamaterial superlenses show an improved resolution power
in comparison with image-forming monolayer devices. However this negatively affects the
depth of field and the ability of observing images out of the geometrical image plane. Therefore,
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the design of a multilayer superlens involves a trade off between a required resolution power
and the limitations it includes in the process of recording an image in volume.

The 3D PSF analysis presents potential applications for the complete and simple description
of the image formation in stratified metamaterials and one-dimensional photonic crystals. This
model is also appropriate for flat-lens designs using metal-dielectric multilayered structures.
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16. R. Kotyński and T. Stefaniuk, “Multiscale analysis of subwavelength imaging with metal
dielectric multilayers,” Opt. Lett. 35(8), 1133–1135 (2010).

17. P. Yeh, Optical Waves in Layered Media, Wiley, New York (1988).

Biographies and photographs of the authors not available.

Journal of Nanophotonics 051807-8 Vol. 5, 2011

http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1038/426404a
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1080/09500340308235215
http://dx.doi.org/10.1364/AO.49.005870
http://dx.doi.org/10.1364/JOSAA.26.002226
http://dx.doi.org/10.1364/JOSAA.21.000491
http://dx.doi.org/10.1063/1.2397022
http://dx.doi.org/10.1088/0034-4885/59/5/002
http://dx.doi.org/10.1049/el:20010863
http://dx.doi.org/10.1103/PhysRevB.74.115116
http://dx.doi.org/10.1103/PhysRevA.77.033848
http://dx.doi.org/10.1103/PhysRevA.77.033848
http://dx.doi.org/10.1364/OL.35.001133

	Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution
	Abstract.
	Introduction
	PSF of a Flat Superlens
	Limit of Resolution
	Extreme Super-resolution in Multilayered Structures
	Conclusions


